Provable Security and Indifferentiability

نویسنده

  • Avradip Mandal
چکیده

In this thesis we consider different problems related to provable security and indifferentiability framework. Ideal primitives such as random oracles, ideal ciphers are theoretical abstractions of cryptographic hash functions and block ciphers respectively. These idealized models help us to argue security guarantee for various cryptographic schemes, for which standard model security proofs are not known. In the first part of this thesis we consider the problems related to ideal primitive construction starting from a different ideal primitive. We adopt the indifferentiability framework proposed by Maurer et. al. in TCC’04 for this purpose. The indifferentiability framework helps us to preserve the security guarantee of cryptographic schemes when the ideal primitives are replaced by indifferentiable constructions, even when the ideal primitives are used in a public manner. At first, we consider the problem of ideal cipher domain extension. We show the 3-round Feistel construction, built using n-bit ideal ciphers are actually indifferentiable from a 2n-bit ideal cipher. We also consider other related issues such as, why 2-round Feistel is not sufficient, security analysis in standard indistinguishability model for both 2 and 3 round constructions, etc. Afterwards, we consider the open problem: whether 6-round Feistel construction using random round functions is indifferentiable from a random invertible permutation or not. We give a partial positive answer to this question. We show the construction is actually publiclyindifferentiable (which is a restricted version of full indifferentiability) from an invertible random permutation. In the later part of the thesis, we concentrate on some issues related to the security of Probabilistic Signature Scheme (PSS). PSS with RSA trapdoor is a widely deployed randomized signature scheme. It is known to be secure in Random Oracle model. However, recently randomized signature scheme such as iso/iec 9796-2 is shown to be susceptible to hardware fault attacks. In this work we show, PSS is actually secure against random fault attacks in random oracle model. Afterwards, we consider the open problem related to standard model security of PSS. We give a general negative result in this direction. We rule out existence of any black box proof technique showing security of PSS in standard model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Careful with Composition: Limitations of the Indifferentiability Framework

We exhibit a hash-based storage auditing scheme which is provably secure in the random-oracle model (ROM), but easily broken when one instead uses typical indifferentiable hash constructions. This contradicts the widely accepted belief that the indifferentiability composition theorem from [27] applies to any cryptosystem. We characterize the uncovered limitations of indifferentiability by showi...

متن کامل

Careful with Composition: Limitations of Indifferentiability and Universal Composability

We exhibit a hash-based storage auditing scheme which is provably secure in the random-oracle model (ROM), but easily broken when one instead uses typical indifferentiable hash constructions. This contradicts the widely accepted belief that the indifferentiability composition theorem applies to any cryptosystem. We characterize the uncovered limitation of the indifferentiability framework by sh...

متن کامل

Provable Security of BLAKE with Non-ideal Compression Function

We analyze the security of the SHA-3 finalist BLAKE. The BLAKE hash function follows the HAIFA design methodology, and as such it achieves optimal preimage, second preimage and collision resistance, and is indifferentiable from a random oracle up to approximately 2 assuming the underlying compression function is ideal. In our work we show, however, that the compression function employed by BLAK...

متن کامل

Towards Understanding the Known-Key Security of Block Ciphers

Known-key distinguishers for block ciphers were proposed by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major research topic in cryptanalysis since then. A formalization of known-key attacks in general is known to be difficult. In this paper, we tackle this problem for the case of block ciphers based on ideal components such as random permutations and random functions as well as propos...

متن کامل

Indifferentiability of the Hash Algorithm BLAKE

The hash algorithm BLAKE, one of the SHA-3 finalists, was designed by Aumasson, Henzen, Meier, and Phan. Unlike other SHA-3 finalists, there is no known indifferentiable security proof on BLAKE. In this paper, we provide the indifferentiable security proof on BLAKE with the bound O( σ 2 2n−3 ), where σ is the total number of blocks of queries, and n is the hash output size.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012